TUTORIAL NOTES FOR MATH4220

JUNHAO ZHANG

1. LOCAL PROPERTIES FOR SOLUTIONS OF THE PARABOLIC EQUATIONS

Let us investigate various properties for the solution of the heat equation. Denote $Q_{R}\left(t_{0}, x_{0}\right):=\left(t_{0}-R^{2}, t_{0}\right] \times B_{R}\left(x_{0}\right)$ and $Q_{R}:=Q_{R}(0,0)$.

Example 1. Let $u \in C^{1,2}$ such that $\partial_{t} u-\Delta u=0$ in $Q_{R}\left(t_{0}, x_{0}\right)$ for some $\left(t_{0}, x_{0}\right) \in$ $\mathbb{R} \times \mathbb{R}^{n}$ and $R>0$. Then,

$$
\left|D_{x} u\left(t_{0}, x_{0}\right)\right| \leq \frac{C}{R}\|u\|_{L^{1}\left(Q_{R}\left(t_{0}, x_{0}\right)\right)}
$$

In general, for $\beta \in \mathbb{N}$ and multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$,

$$
\left|\partial_{t}^{\beta} D_{x}^{\alpha} u\left(t_{0}, x_{0}\right)\right| \leq \frac{C_{n}^{|\alpha|+2|\beta|+1} e^{|\alpha|+2 \beta-1}(|\alpha|+2 \beta)!}{R^{|\alpha|+2 \beta}}\|u\|_{L^{1}\left(Q_{R}\left(t_{0}, x_{0}\right)\right)}
$$

where $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$.
Proof. It suffices to consider the case for $\left(t_{0}, x_{0}\right)=(0,0)$ and $\beta=0$.
For $|\alpha| \leq 1$. Let $(t, x) \in Q_{\frac{1}{4} R}$, choose a cutoff function $\varphi \in C^{\infty}\left(Q_{R}\right)$ with $\operatorname{supp} \varphi \subset Q_{\frac{3}{4} R}$ and $\varphi \equiv 1$ in $Q_{\frac{1}{2} R}$, then set

$$
v=\varphi(s, y) \Gamma(t-s, x-y)
$$

where $\Gamma(t-s, x-y)=[4 \pi(t-s)]^{-\frac{n}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}} H(t-s)$. Since u is the solution of the heat equation, therefore

$$
0=v\left(\partial_{s} u-\Delta_{y} u\right)=\partial_{s}(u v)+\nabla_{y} \cdot\left(u \nabla_{y} v-v \nabla_{y} u\right)-u\left(\partial_{s} v+\Delta_{y} v\right) .
$$

For any $\varepsilon>0$, integrate the above equation with respect to (s, y) in $\left(-R^{2}, t-\varepsilon\right) \times$ B_{R}, then

$$
\begin{aligned}
& \int_{B_{R}} \varphi(t-\varepsilon, y) u(t-\varepsilon, y) \Gamma(\varepsilon, x-y) d y \\
= & \int_{-R^{2}}^{t-\varepsilon} \int_{B_{R}} u(s, y) \partial_{s}(\varphi(s, y) \Gamma(t-s, x-y)) d y d s \\
& +\int_{-R^{2}}^{t-\varepsilon} \int_{B_{R}} u(s, y) \Delta_{y}(\varphi(s, y) \Gamma(t-s, x-y)) d y d s,
\end{aligned}
$$

let $\varepsilon \rightarrow 0$,

$$
\begin{aligned}
u(t, x)= & \int_{-R^{2}}^{t} \int_{B_{R}} u(s, y) \partial_{s}(\varphi(s, y) \Gamma(t-s, x-y)) d y d s \\
& +\int_{-R^{2}}^{t} \int_{B_{R}} \Delta_{y}(\varphi(s, y) \Gamma(t-s, x-y)) d y d s
\end{aligned}
$$

since $\partial_{s} \Gamma(t-s, x-y)+\Delta_{y} \Gamma(t-s, x-y)=0$ for $s<t$, therefore

$$
\begin{aligned}
u(t, x)= & \left.\int_{-R^{2}}^{0} \int_{B_{R}} u(s, y)\left(\partial_{s} \varphi(s, y)+\Delta_{y} \varphi(s, y)\right) \Gamma(t-s, x-y)\right) d y d s \\
& +\int_{-R^{2}}^{0} \int_{B_{R}} u(s, y) 2 \nabla_{y} \varphi(s, y) \cdot \nabla_{y} \Gamma(t-s, x-y) d y d s
\end{aligned}
$$

Note that $\partial_{s} \varphi \equiv \nabla_{y} \varphi \equiv \Delta_{y} \varphi \equiv 0$ in $Q_{\frac{1}{2} R}$ and $Q_{R} / Q_{\frac{3}{4} R}$, then

$$
\begin{aligned}
\nabla_{x} u(t, x)= & \left.\iint_{Q_{\frac{3}{4} R} / Q_{\frac{1}{2} R}} u(s, y)\left(\partial_{s} \varphi(s, y)+\Delta_{y} \varphi(s, y)\right) \nabla_{x} \Gamma(t-s, x-y)\right) d y d s \\
& +\iint_{Q_{\frac{3}{4} R} / Q_{\frac{1}{2} R}} u(s, y) 2 \nabla_{y} \varphi(s, y) \cdot \nabla_{x} \nabla_{y} \Gamma(t-s, x-y) d y d s .
\end{aligned}
$$

Since there exists a constant $C>0$ such that

$$
\left|\partial_{s} \varphi\right|+\left|\Delta_{y} \varphi\right| \leq C, \quad\left|\nabla_{y} \varphi\right| \leq C
$$

then
$\left|\nabla_{x} u(t, x)\right| \leq C \iint_{Q_{\frac{3}{4} R} / Q_{\frac{1}{2} R}}\left(\left|\nabla_{x} \Gamma(t-s, x-y)\right|+\left|\nabla_{x} \nabla_{y} \Gamma(t-s, x-y)\right|\right)|u(s, y)| d y d s$.
By the explicit expression for $\Gamma(t-s, x-y)$,

$$
\left|\nabla_{x} \Gamma\right| \leq C_{n} \frac{|x-y|}{(t-s)^{\frac{n}{2}+1}} e^{-\frac{|x-y|^{2}}{4(t-s)}}, \quad\left|\nabla_{x} \nabla_{y} \Gamma\right| \leq C_{n} \frac{|x-y|^{2}+(t-s)}{(t-s)^{\frac{n}{2}+2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}
$$

since for $(t, x) \in Q_{\frac{1}{4} R}$ and $(s, y) \in Q_{\frac{3}{4} R} / Q_{\frac{1}{2} R}$,

$$
|x-y| \leq R, \quad 0<t-s \leq R, \quad \frac{1}{(t-s)^{\frac{n}{2}+i}} e^{-\frac{|x-y|^{2}}{4(t-s)}} \leq C_{n}, i=1,2
$$

then

$$
\left|\nabla_{x} u(t, x)\right| \leq \frac{C_{n}^{2}}{R}\|u\|_{L^{1}\left(Q_{R}\right)}
$$

for all $(t, x) \in Q_{\frac{1}{4} R}$, therefore

$$
\left|\nabla_{x} u(0,0)\right| \leq \frac{C_{n}^{2}}{R}\|u\|_{L^{1}\left(Q_{R}\right)} .
$$

For $|\alpha| \geq 2$, we prove the result by induction. Suppose for $|\alpha| \leq k-1$, it is valid that

$$
\left|D_{x}^{\alpha} u(0,0)\right| \leq \frac{C_{n}^{|\alpha|+1} e^{|\alpha|-1}|\alpha|!}{R^{|\alpha|}}\|u\|_{L^{1}\left(Q_{R}\right)}
$$

where $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. Now for arbitrary multi-index α with $|\alpha|=k$, there exist some $i \in\{1, \ldots, n\}$ and multi-index α^{\prime} with $\left|\alpha^{\prime}\right|=k-1$ such that

$$
D_{x}^{\alpha} u=\partial_{x_{i}} D_{x}^{\alpha^{\prime}} u
$$

since $D_{x}^{\alpha^{\prime}} u$ is also a solution of the heat equation, then by the similar discussion as above, for $0<\theta<1$,

$$
\left|\partial_{x_{i}} D_{x}^{\alpha^{\prime}} u(0,0)\right| \leq \frac{C_{n}^{2}}{(1-\theta) R}\left\|D_{x}^{\alpha^{\prime}} u\right\|_{L^{1}\left(Q_{(1-\theta) R}\right)}
$$

Since for $(t, x) \in Q_{(1-\theta) R}, Q_{\theta R}(t, x) \subset Q_{R}$, therefore by the induction assumption,

$$
\left|D^{\alpha^{\prime}} u(t, x)\right| \leq \frac{C_{n}^{\left|\alpha^{\prime}\right|+1} e^{\left|\alpha^{\prime}\right|-1}\left|\alpha^{\prime}\right|!}{(1-\theta) \theta^{\left|\alpha^{\prime}\right|} R^{\left|\alpha^{\prime}\right|+1}}\|u\|_{L^{1}\left(Q_{R}\right)}
$$

Let $\theta=\frac{m}{m+1}$, then

$$
\frac{1}{(1-\theta) \theta^{\left|\alpha^{\prime}\right|}}<e\left(\left|\alpha^{\prime}\right|+1\right)
$$

therefore

$$
\left|D_{x}^{\alpha} u(0,0)\right| \leq \frac{C_{n}^{|\alpha|+1} e^{|\alpha|-1}|\alpha|!}{R^{|\alpha|}}\|u\|_{L^{1}\left(Q_{R}\right)}
$$

Example 2. Let $u \in C^{1,2}$ such that $\partial_{t} u-\Delta u=0$ in $Q_{R}\left(t_{0}, x_{0}\right)$ for some $\left(t_{0}, x_{0}\right) \in$ $\mathbb{R} \times \mathbb{R}^{n}$ and $R>0$, then for arbitrary $t \in\left(t_{0}-R^{2}, t_{0}\right], u(t, \cdot)$ is analytic in $B_{R}\left(x_{0}\right)$.

Proof. For arbitrary $t \in\left(t_{0}-R^{2}, t_{0}\right]$, to prove $u(t, \cdot)$ is analytic in $B_{R}\left(x_{0}\right)$, we show $u(t, \cdot)$ can be represented by a convergent power series in a neighborhood of arbitrary $x^{\prime} \in B_{R}\left(x_{0}\right)$.

Denote

$$
r:=\frac{1}{4} \operatorname{dist}\left(x^{\prime}, \partial B_{R}\left(x_{0}\right)\right) .
$$

For each $x \in B_{r}\left(x^{\prime}\right)$, we have $Q_{r}(t, x) \subset Q_{2 r}\left(t, x^{\prime}\right)$, then

$$
\left|D_{x}^{\alpha} u(t, x)\right| \leq \frac{C_{n}^{|\alpha|+1} e^{|\alpha|-1}|\alpha|!}{(2 r)^{|\alpha|}}\|u\|_{L^{1}\left(Q_{2 r}\left(t, x^{\prime}\right)\right)}
$$

Consider the Taylor series for u at y_{0},

$$
S_{N}(t, x)=\sum_{|\alpha| \leq N-1} \frac{D_{x}^{\alpha} u\left(t, x^{\prime}\right)}{\alpha!}\left(x-x^{\prime}\right)^{\alpha}
$$

we claim that $S_{N}(t, x)$ converges provided $x \in B_{\varepsilon}\left(x^{\prime}\right)$ with $0<\varepsilon<\frac{r}{C_{n} e}$. Indeed, denote the remainder term

$$
R_{N}(t, x):=u(t, x)-S_{N}(t, x)=\sum_{|\alpha|=N} \frac{D_{x}^{\alpha} u\left(t, x^{\prime}+\theta\left(x-x^{\prime}\right)\right)\left(x-x^{\prime}\right)^{\alpha}}{\alpha!}
$$

for some $0 \leq \theta \leq 1$. Then for $x \in B_{\varepsilon}\left(x^{\prime}\right)$,

$$
\begin{aligned}
\left|R_{N}(t, x)\right| & \leq C\|u\|_{L^{1}\left(Q_{2 r}\left(t, x^{\prime}\right)\right)} \sum_{|\alpha|=N} \frac{C_{n}^{N+1} e^{N-1}}{(2 r)^{N}}\left(\frac{r}{C_{n} e}\right)^{N} \\
& \leq C\|u\|_{L^{1}\left(Q_{2 r}\left(t, x^{\prime}\right)\right)} \frac{C_{n}}{2^{N} e}
\end{aligned}
$$

therefore by letting N goes to infinity, we have

$$
\lim _{N \rightarrow \infty}\left|R_{N}(t, x)\right|=0
$$

which implies that $S_{N}(t, x)$ converges to $u(t, x)$.
Remark 3. The solution of the heat equation is not necessarily analytic in t. For example, consider

$$
u(t, x)= \begin{cases}t^{-\frac{1}{2}} e^{-\frac{x^{2}}{4 t}}, & x>1, t>0 \\ 0, & x>1, t \leq 0\end{cases}
$$

then u is a solution of the heat equation in $(-\infty, \infty) \times(1, \infty)$ but is not analytic in t.

A Supplementary Problem

Problem 4. Let $M \subset \mathbb{R}^{n+1}$ and $u \in C^{1,2}(M)$ is a solution of the heat equation. Let $\left(t_{0}, x_{0}\right) \in \partial M$ be the local maximal point of u. If there exists a ball $B_{r}\left(t_{0}, x_{0}\right) \subset M$ such that $\partial M \cap \overline{B_{r}\left(t_{0}, x_{0}\right)}=\left\{\left(t_{0}, x_{0}\right)\right\}$, then

$$
\frac{\partial u}{\partial v}\left(t_{0}, x_{0}\right)>0
$$

where $v=\frac{\left(t-t_{0}, x-x_{0}\right)}{r}$. In particular, if ∂M is C^{1} at $\left(t_{0}, x_{0}\right)$, then v is the inward unit normal to ∂M at the point $\left(t_{0}, x_{0}\right)$.

For more materials, please refer to $[1,2,3,4]$.

References

[1] S. Alinhac, Hyperbolic partial differential equations, Universitext, Springer, Dordrecht, 2009.
[2] L. C. Evans, Partial differential equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.
[3] Q. Han and F. Lin, Elliptic partial differential equations, vol. 1 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997.
[4] W. A. Strauss, Partial differential equations. An introduction, John Wiley \& Sons, Inc., New York, 1992.
Email address: jhzhang@math.cuhk.edu.hk

